全国- 「切换城市」 培训家旗下培训平台
手机版
网站导航

五个方法助你取得GMAT数学高分

2020.03.13

发布者:网上发布

GMAT数学是很多考生头疼的事,但是GMAT数学往往是能拿到高分的科目,甚至可以取得满分。那么怎么做才能在GMAT考试中取得满分呢。小编总结了五个方法帮您获得GMAT数学满分。

 一、数形结合。

数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.

 二、换元。

换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结 果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从 而达到化繁为简、变未知为已知的目的.

 三、转化与化归。

所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.

在GMAT考试中,转化与化归的思想方法是数学中*基本的思想方法.GMAT数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思 想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析 法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.

 四、函数与方程。

函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理, 实现问题与方程的互相转化接轨,达到解决问题的目的.

 五、分类讨论。

所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的 结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是“化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

以上是小编帮你获得GMAT数学满分的五个方法,同学们可以把上述五个方法结合实践运用到GMAT数学备考中,找出更加适合自己的解题方法,最后小编祝愿大家在GMAT考试中取得高分。

上一篇:Z同学:我取得730分的三个要点 下一篇:国际高中到底上什么?之A-Level课程

热门发布

推荐机构

热门课程

本站展示的所有信息内容系由机构或个人用户发布,可能存在发布者所发布的信息,并未获得品牌所有人有效授权。本平台会加强审核,但无法完全排除差错或疏漏。郑重声明:本平台仅为免费注册用户提供免费的信息发布渠道,但不对其发布信息的真实性、准确性和合法性负责,对此也不承担任何法律责任。对于从本网站或本网站的任何有关服务所获得的资讯、内容或广告,您接受或信赖任何信息所产生之风险应自行承担,本网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。,如果侵犯,请及时通知我们,发送邮件至15610150293@126.com本网站将在第一时间及时删除。